
Journal of Asian Concrete Federation 

Vol. 9, No. 1, pp. 17-30, June 2023 

ISSN 2465-7964 / eISSN 2465-7972 

DOI http://dx.doi.org/10.18702/acf.2023.9.1.17 

Technical Paper 

   Journal of Asian Concrete Federation, Vol. 9, No. 1, Jun. 2023 17 

Prediction of Compressive Strength of Self-Compacting Concrete using Machine 

Learning Techniques 

Yogesh Aggarwal, Gulshan K. Gurjar, Paratibha Aggrawal*, Pankaj Kumar 
(Received August 02, 2022; Revised April 19, 2022; Accepted April 27, 2022; Published June 30, 2022) 

Abstract: The paper deals with the use of Deep Neural Networks (DNN), Artificial Neural Network (ANN), 

and Random Forest (RF) for estimating the 28- day compressive strength of self-compacting concrete (SCC) 

containing silica and filler (fly ash, marble powder, and lime powder) with a comparative performance 

analysis of all techniques. A total of 179 data were taken from literature already published with eight input 

variables for modelling. The evaluation and comparison of the performance of predicted models were made 

using the same datasets in training and testing based on correlation coefficient (CC), Coefficient of 

determination (R2), root mean square error (RMSE), and mean absolute error (MAE). The results showed 

that proposed model's performance could be improved when training takes place in a Deep Neural Network 

model with multiple hidden layers. Sensitivity analysis was used to quantify the effect of different variables 

on concrete strength with coarse aggregate greatly affecting the compressive strength of SCC, followed by 

fine aggregate content and quantity of silica. A dependable prediction tool is provided through this 

investigation which suggests that the present model can help scientists and engineers in the optimization of 

the mixture design of SCC. 
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1. Introduction

Nowadays, Self- compacting concrete (SCC) is 

one of the most significant advancements in 

concrete technology. This concrete can fill and flow 

the formwork's constrained areas without causing 

vibration. SCC is a flowable substance placed in 

formwork and compacted entirely by its weight 

without vibration or additional processing. 

Beginning in 1983, concrete construction 

durability was the main topic of discussion in Japan 

for several years. Compaction by skilled workers is 

essential to creating long-lasting concrete buildings. 

However, in Japan's construction sector, the quality 

of construction work has decreased in tandem with 

the steady decline in the number of skilled 

personnel. SCC, which can be compressed into 

every corner of a formwork merely by its weight 

and without vibrating compaction, was one 

approach for achieving enduring concrete structures 

irrespective of construction work. Okamura 

recognized the requirement for this grade of 

concrete in 1986 [1]. SCC was first used by Japan 

in building tunnel bridge construction in the early 

1990s, and several SCC bridges have been 

constructed in Europe. SCC has much potential in 

highway bridge construction for structural purposes 

(Fig.1).  

Various researchers have conducted several 

experiments for enhancing the strength of SCC by 

altering the water-cement ratio, size of aggregates, 

adding pozzolanic material, etc., to increase the 

workability of concrete mix. Using chemical 

admixtures increases the flow ability of the mix. 

The SCC with supplementary materials can also be 

developed, which can help use waste or by-products 

from various industries [2,3]. Some of the 

researchers have worked on SCC having adequate 

flow ability, filling ability, and strength by utilizing 

waste materials like fly ash [4,5], silica fume [6–8], 

limestone powder [9], and marble powder [10] as 

SCM’s for partial substitution in SCC.  

In recent times, machine learning and artificial 

intelligence (AI) have been widely used in various 

engineering fields. Techniques involving 

nonparametric models like a neural network [11–
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13], Floppy logic  [14–17] support vector machine 

models [18], and decision-tree-based algorithms 

[19] can be used for the prediction of SCC

properties. The literature reveals when the training

of these models is done with the available data set,

they acquire the capability for estimating strength

with sufficient accuracy; however, the ability to

measure the impact of influencing parameters over

strength is still lacking, and also their ability to 

forecast things is limited by the data requirements. 

Due to their non-linear approach in modeling, it can 

set an efficient relationship between large and 

complex data set of input and output. This further 

helps in decision-making to generate SCC of 

desired property as per the need of construction. 

Fig. 1 – Flow chart: Necessity of SCC 

During the last few years, Deep Neural 

Network, Artificial Neural Network (ANN), and 

Random Forest (RF) have been used widely in 

various civil engineering problems, as reported by 

several studies, and has also been observed to 

outperform the current modeling techniques [20–

27]. Deep Neural Network is capable of signifying 

significantly changing and intricate high-

dimensional functions in correlation to 

conventional neural networks [28]. Two Hybrid AI 

techniques namely neuro-swarm and neuro-

imperialism are proposed to predict the concrete 

compressive strength. In these two hybrid models, 

the particle swarm optimization and imperialist 

competitive algorithm were used to optimize the 

weights and biases of the ANN to get a higher 

performance prediction results [29], ensemble for 

bond strength and fly ash concrete [30,31], 

similarly soft computing techniques were used for 

prediction of beam shear strength [32,33]. 

However, the application of Deep Neural 

Network, ANN, and RF to prediction of foamed 

concrete strength [24] have been suggested in a 

detailed literature review but so far, no application 

to the prediction of the strength of SCC. Although 

the algorithms of ANN and DNN are the same, 

DNN is part of ANN and is used to model high-

level abstraction in data. ANN has improved DNN 

by using advances such as rectified linear units 

(ReLU)for activation functions. 

2. Research Significance

ANN model's success in predicting the 

compressive strengths of SCC mixes and in 

simulating physical processes shows that such a 

numerical technique can be used dependably to 

produce adequate compressive strengths of SCC 

mixes within the range of input parameters used to 

train the model, as opposed to relying on expensive 

experimental investigation. The resulting 

information can then be utilized to suggest and 

formulate mathematical equations that will assist 

working structural engineers in more precisely 

predicting the compressive strengths of SCC mixes. 

The behavior of complex database parameters and 

their experimental outcomes can be effectively 

described by machine learning algorithms. 

Additionally, although ANN has been extensively 

used to solve real-world financial and electrical 

engineering problems, its application to real-world 

structural engineering issues is still restricted to 

research-related issues. Additionally, the 

preliminary findings in this work show the key 

variables that influence the value of compressive 

strength in SCC mixes.  

In recent years, it has been observed that DNN 

has widespread and much research in various civil 

engineering problems, as reported by several 

studies. It has also been observed to outperform the 

current modelling techniques. DNN is capable of 

signifying extremely changing and intricate high-

dimensional functions in correlation to 

conventional neural networks. This paper sets a 

sight on the use of Deep Neural Network, ANN, 

and RF for calculating SCC's compressive strength 

and also the current approach helps to understand 
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the tangled relationship of components of self-

compacting concrete with the compressive strength 

using Deep Neural Network, ANN, and RF. To the 

author's knowledge, the current DNN concepts, 

such as rectified linear unit (ReLU) for activation 

function, dropout, and mini-batch, have not yet 

been applied to the prediction of concrete strength 

in the open literature. 

3. Methods

3.1 Deep Neural Network (DNN) 

A node for processing forms the essential 

element of a BPNN. The behavior of processing 

nodes is similar to the biological neuron in 

performing two functions, i.e., summing input 

values and then passing this sum through an 

activation function f for generating output. An 

activation function, f, can be any differentiable 

function. The layers of BPNN are arranged using 

all the processing nodes, and the interconnection of 

each layer is maintained with the following layer. 

Nodes of the identical layer do not show any 

interconnection. The input layer in BPNN generally 

distributes the input data and thus is often used as a 

distribution structure in which no processing 

occurs. This layer is followed by one or more 

processing levels, often called hidden layers; 

nonetheless, the output layer is the stage after 

processing. This type of neural network, which has 

two or more latent layers containing numerous 

nodes and utilizes advanced numerical 

demonstration, is known as Deep Neural Network. 

Associated weight exists in all 

interconnections between each node. Net input ( ) 

to the unit is calculated by summation of the 

product of the values passing from input layer 

through these linkages and associated weight, 

represented as follows: 

𝑛𝑦 =∑ 

𝑥

𝑤𝑦𝑥𝑜𝑥 (1) 

Where unit x denotes the input unit and 𝑤𝑦𝑥
denotes the weight of the linkage to unit y from unit 

x and 𝑂𝑥denotes the output of the unit x. This is

followed by the activation function for 

transforming the net input attained by the 

aforementioned equation to yield an output (𝑂𝑦) for

the unit y. 

Conventionally, two widely used non-linear 

activation functions, namely sigmoid and 

hyperbolic tangent, are used with BPNN. For 

detailed learning of the intricacies of data, non-

linearity is introduced in the neural network using 

activation functions. It was observed that two major 

problems with changes around the mid-point of 

sigmoid and hyperbolic tangent functions are 

Saturation and sensitivity [34]. 

The activation function namely rectified linear 

activation function (ReLU) [31], can be considered 

a piecewise linear function and a significant 

algorithmic change in the design of Deep Neural 

Network [34,35] in the last decade. 

In deep learning, ReLU is the ubiquitously 

used activation function that yields the actual input 

value as output, provided it is positive or the result 

is zero. The best feature of this activation function 

is the simplicity of its training and its superiority to 

alternative activation mechanisms with Deep 

Neural Network. The ReLU function is calculated 

as follows: 

𝑓(𝑛𝑗) = 𝑚𝑎𝑥(0, 𝑛𝑗)   (2) 

Initializing BPNN using correct weights 

within a reasonable range is crucial for the neural 

networks to function correctly. It can be obtained 

by random weight initialization, but it performs 

poorly. So, a technique for weights initialization for 

Deep Neural Network was proposed, which was 

known as Xavier weight initialization [36].  

Another important user-defined parameter is 

the learning rate. Mostly, it is set randomly between 

0 and 1. Deep Neural Network employed adaptive 

gradient descent with an adjustable learning rate 

technique [34]. Adaptive moment prediction [37] 

based on an optimal algorithm was used to update 

network weights during training. Adam involves 

establishing various user-defined parameters to 

calculate different learning rates for multiple 

parameters; hence default values for all user-

defined parameters as listed were utilized [37]; it 

was found to work well with data in this study. 

Overfitting may be observed in Deep Neural 

Network due to the overfitting problem because of 

restricted training data, thus giving a poor 

performance with test data. Regularization methods 

are used to prevent the overfitting problem, thereby 

improving the performance of Deep Neural 

Network models [34].  

The learning algorithm is slightly modified 

through regularization techniques, enabling better 

model generalization. Srivastava et al. [38] 

proposed the introduction of the dropout layer in 

the Deep Neural Network’s design to enhance the 

model's generalization capability and avoid the 

overfitting problem.  

Dropout is a regularization method used to 

refine the performance of Deep Neural Network 

models. By randomly changing these nodes' 

weights to zero, this approach removes a node 
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randomly from either a latent or a manifest layer 

with all its incoming and outgoing connections 
[38]. Probability p (an indication of the likelihood 

of maintaining the node throughout training, 

ranging between 0 and 1) is assigned to individual 

nodes. Besides selecting the activation function, the 

user-defined hidden layers (i.e., p) dropout layer's 

likelihood of retention may be optimized using a 

hit-and-miss method. 

Several user-defined features, such as the 

nodes in every hidden layer, the optimization 

algorithm, the number and type of hidden layers, 

the weight initialization method, the batch size (the 

number of training samples used in one iteration), 

the number of epochs (one epoch is defined as 

passing an entire training dataset through the neural 

network both in the forward and backward 

direction at least once), and the activation function 

for output, hidden and surface layers are all 

included. In this study, WEKA 3.9.5 was utilized to 

implement Deep Neural Network. 

3.2 Artificial neural network (ANN)

Artificial Neural Network is a robust 

computer tool for modelling complicated non-linear 

relationships based on biological neural networks. 

The fundamental building blocks are units (or 

"nodes") akin to neurons, weighted connections 

that may be linked to synapses in biological 

systems. Nodes are the components used in 

information processing. There may be variations in 

the number of nodes and their connections. The 

total number of nodes in the input and output layers 

corresponds to the number of input and output 

variables in the data set [39–43]. The appropriate 

number of nodes in the hidden layer must be 

discovered by trial and error. More neurons are 

known to increase learning ability but decrease the 

ANN's reasoning ability. As a general rule, an 

ANN should have the smallest number of neurons 

designed to simulate the training data. Each node-

to-node link has a weight that represents a past 

learning process. The input-output relationship may 

be approximated by altering these weights. The 

network must be trained to repeat this input-output 

relationship to determine the optimal weight. 

Briefly, the activation rate is specified and sent 

from the input layer to the output layer through the 

hidden layers for a given input and the linkages. 

The five main aspects of neural network-based 

modelling are: 

1. Data collection, analysis, and depiction of the

problem.

2. Architecture selection.

3. Identifying the learning process.

4. Networks' training.

5. The trained network is tested and validated for

generalization evaluation.

Following these steps, ANN can produce 

answers, even errors, and can analyze data very 

quickly, allowing it to be utilized to solve 

complicated engineering issues. It can adapt to new 

data and solve problems with incomplete or 

inaccurate data. The ANN is made up of a large 

number of basic processing units known as neurons 

(Fig. 2). In comparison to statistical approaches, the 

Artificial Neural Network methodology has the 

benefit of being able to employ an unlimited 

number of distinctive characteristics of the 

phenomena [44]. A good structure, activation 

function, and a sufficient number of hidden layers 

are all design considerations in the Artificial Neural 

Network model. 

Fig. 2 – Working model of ANN 

The five essential parts of an artificial neuron 

are inputs, weights, sum functions, activation 

functions, and outputs. Information entering the 

neural network cell through other external cells is 

called input. The influence of an input set or 

another processing element in the introductory level 

on this process element is expressed by weights. 

The sum function determines the total effect of 

inputs and weights on this process element. The net 

input to a cell is calculated with this function. The 
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activation function is a function that transforms net 

input derived from the sum function to produce the 

cell output [43]. 

Activation functions come in a variety of 

shapes and sizes. Non-linear activation functions, 

such as sigmoid and step functions, are commonly 

utilized. Because Artificial Neural Networks are 

learned via experience, they may generalize from 

previous results to create a new development when 

an unknown input is introduced to the network. 

Equation (3) gives the output of a neuron: 

= ∑𝑁𝑛=1 𝑊𝑛𝑋𝑛 + 𝑏  (3) 

Where 𝑋n= (X1, X2, X3…) represents the N 

inputs applied to the neuron. Wn represents the 

weight of the output 𝑋n, and b is the bias. 

The back-propagation multilayer perceptron is 

the most popular and well-known multilayer 

perceptron training algorithm. The gradient descent 

method forms its foundation of it. Changing the 

weight for a brief period reduces the error for a 

specific training set. Numerous civil engineering 

applications employ this method. The weight of 

each neuron shows how much input will influence 

an output. In the output and input layer, there are 

precisely as many nodes as variables for output and 

input. 

Fig. 3 shows the input parameters are 

processed with the help of a single hidden layer, 

and Fig. 4 shows the same input parameters 

processed using a double hidden layer. Input 

parameters are cement, w/b, silica, SP (%), coarse 

aggregate, fine aggregate, and filler. 

Fig. 3 – ANN with one hidden layer 

Fig. 4 – ANN with two hidden layer 

3.3 Random forest (RF) 

Random forest regression was proposed by 

Breiman in 2001 and is considered an improved 

classification regression method. Ensemble 

learning is based on combining multiple classifiers 

to improve model performance and solve a 

complex problem. RFs contain the number of 

decision trees on various subsets of a given data set 

and take the average value of these datasets to 

improve the predictive accuracy [45–47]. The more 

number of trees leads to avoiding overfitting and 

higher accuracy (Fig. 5). Advantage of RF are as 

follows:  

(a) Training time taken is less than other methods.

(b) Testing time taken is lesser than other methods.

(c) It can retain accuracy even when a significant

amount of data is missing.

A prediction is made for each tree formed in

the initial phase of the RF's operation before 

another RF is created by mixing N decision trees. 

Fig. 5 shows a schematic of the prediction of the 

Random Forest model. 
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Fig. 5 – Schematic of random forest prediction 

4. Results

4.1 Data Base 

For the purpose of modeling, large and 

compressive data were collected from published 

literature. The sources and number of data taken are 

mentioned in Table 1, considering characteristics of 

training and test data used in modelling given in 

Tables 2 and 3. Data was collected for the 

quantities of Cement (kg/m3), W/B, Fine aggregates 

(kg/m3), coarse aggregate (kg/m3), Silica (kg/m3), 

Superplasticizer (%) and Filler (kg/m3). All 179 

observations in the research paper comprised the 

dataset, divided arbitrarily among training models 

(83%) and test models (17%). The compressive 

strength of SCC for 28 days was considered an 

output of this study's models. 

Table 1 – Sources of Data 

Reference Authors and publication 
Number of Data 

collected 

[48] Wongkeo et al. / Materials and Design (2014) 20 

[49] Mini and Mohan, Construction and Building Materials (2018) 6 

[50] Atahan and Durgun, Construction and Building Materials (2018) 28 

[51] Bernal et al./Construction and Building Materials (2018) 8 

[52] Choudhary et al./Construction and Building Materials (2020) 12 

[53] M.A. Yaman et al./ Alexandria engineering journal (2017) 42 

[57] Mostafa Jalal et al./Construction and building materials (2015) 8 

[54] 
S.H.V. Mahalakshmi and V. C. Khed/Materials Today: 

Proceedings (2020) 
4 

[55] 
B.Behforooz et al./9th International Congress on Civil

Engineering, Isfahan University of Technology (2012)
3 

[56] 
O.M. Ofuyatan et al./International Conference on Engineering

for Sustainable World, IOP Publishing  (2019) 
4 

[57] F.A. Mustapha et al./Materials today: Preceding  (2020) 4 

[58] 
Yuksel Esen and Eyyup Orhan/ KSCE Journal of Civil 

Engineering  (2016) 
6 

[59] 
K.S. Johnsirani, Dr. A. Jagannathan/ International Journal of 

Engineering Research and Development  (2015) 
5 

[60] 
Rita M. Rathod, M.R.Vyawahare/International Journal of 

Innovative Science, Engineering & Technology  (2015) 
11 

[61] 
Hakim Abdelgader et al./Tripoli University, Tripoli, Libya 

(2014) 
12 

[62] H. Szilagyi corbu/Buletinul INCERCOM (2012) 6 

Total Data 179 
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Table 2 – Features of training data used in modelling 

Cement 

(Kg/m3) 

Water 

content 

(Kg/m3) 

Silica 

(Kg/m3) 
SP (%) FA (Kg/m3) 

CA 

(Kg/m3) 

Filler 

(Kg/m3) 
C28 

Mean 386.78 185.12 26.52 1.13 915.74 763.83 103.69 59.62 

Standard 

Error 
7.95 1.90 2.61 0.07 12.88 11.15 8.93 1.21 

Median 400.00 180.84 14.00 0.96 927.00 734.00 80.00 56.01 

Mode 400.00 180.00 0.00 0.90 1048.00 927.40 0.00 44.50 

Standard 

Deviation 
97.03 23.18 31.82 0.91 157.21 136.11 109.02 14.76 

Sample 

Variance 
8474.97 311.16 1014.74 0.82 19253.36 14734.71 11892.73 195.55 

Kurtosis 0.24 1.00 1.81 6.54 1.25 -1.28 -0.36 -0.40

Skewness -0.55 0.26 1.37 1.92 -0.65 0.09 0.83 0.64 

Range 453.12 108.85 150.00 6.00 772.45 408.00 420.00 60.70 

Minimum 146.88 132.00 0.00 0.00 407.55 578.00 0.00 40.30 

Maximum 600.00 240.85 150.00 6.00 1180.00 986.00 420.00 101.00 

Sum 57630.76 27583.04 3950.85 167.91 136445.4 113810.3 15449.91 8883.34 

Confidence 

Level 

(95.0%) 

15.58 3.72 5.11 0.15 25.24 21.85 17.50 2.37 

Table 3 – Features of testing data used in modelling 

Cement 

(Kg/m3) 

Water 

content 

(Kg/m3) 

Silica 

(Kg/m3) 
SP (%) 

FA 

(Kg/m3) 

CA 

(Kg/m3) 

Filler 

(Kg/m3) 
C28 

Mean 384.77 0.37 25.58 1.06 935.44 701.35 99.95 58.41 

Standard 

Error 
15.76 0.01 5.06 0.15 26.85 17.46 17.55 1.65 

Median 400.00 0.37 23.00 0.80 954.00 682.50 100.00 57.35 

Mode 400.00 0.40 0.00 0.80 970.00 722.00 0.00 56.50 

Standard 

Deviation 
86.31 0.05 27.72 0.80 147.06 95.62 96.14 9.05 

Sample 

Variance 
7449.58 0.00 768.25 0.65 21626.76 9142.40 9243.25 81.81 

Kurtosis 1.10 0.56 2.05 4.85 4.88 0.07 1.52 1.33 

Skewness -1.23 0.41 1.54 1.75 -1.63 0.87 1.11 0.76 

Range 333.00 0.20 100.00 3.85 752.45 339.00 390.00 42.20 

Minimum 180.00 0.30 0.00 0.15 407.55 578.00 0.00 43.10 

Maximum 513.00 0.50 100.00 4.00 1160.00 917.00 390.00 85.30 

Sum 11543.00 11.09 767.30 31.85 28063.25 21040.55 2998.50 1752.38 

Confidence 

Level 

(95.0%) 

30.89 0.02 9.92 0.29 52.62 34.22 34.40 3.24 

4.2 Criteria for evaluating model perfor-

mance 

The performance of various techniques in 

predicting the compressive strength was estimated 

utilizing different performance evaluation 

parameters, including correlation coefficient (CC), 

Coefficient of determination (R2), Root Mean 

Square Error (RMSE), and Mean Square Error 

(MSE) given with their expressions in Table 4. 
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Table 4 – Performance indicators 

Reference Authors and publication 

Correlation coeffi-

cient 

Coefficient of de-

termination 

Root mean square 

error 

Mean absolute error 

Scattering Index 

Correlation coeffi-

cient 

Where 

A = Actual or observed values 

P = Predicted values 

A = Mean of actual or observed values 

N = Number of observations 

The degree of linear dependence between the 

observed value and the predicted value [63] is 

quantified using the correlation coefficient, with 

its value close to zero means no association 

between observed and estimated observations, 

although when it approaches one signifies a 

perfect fit among the observed and estimated 

comments [64]. But the accuracy of the model 

cannot be evaluated using CC alone, so additional 

indicators such as R2, RMSE, and MAE can be 

used to assess the models' appropriateness (in 

MPa units). Broadly, the higher value of CC and 

the lower value of R2, RMSE, and MAE lead to a 

decrease in errors among the observed and 

estimated values and thereby specify the 

correctness of models [53]. 

4.3 Model Development 

Preparation of the Deep Neural Network 

model includes choosing the parameters like the 

number of hidden layers, dropout layers, p, 

Activation function, epochs, batch size, instance 

iterator, type of weight initiation, and Updater. 

Preparation of the ANN model includes choosing 

the parameters like the number of hidden layers, 

batch size, learning rate, momentum, training 

time, validation set size, and validation threshold. 

Preparation of a RF model includes choosing the 

parameters like batch size, bag size percent, max 

depth, number execution slots, and number 

iterations. At the start of the design process, the 

model is trained and developed considering a 

couple of chief parameters. On assessing the 

outcomes of the model, if found not satisfactory, 

the number of primary parameters are increased, 

successively. Model accuracy is evaluated by 

comparing the model's results with the actual data. 

In the Deep Neural Network, ANN, and RF, 

the performance and accuracy of the model are 

validated by various performance indicators such 

as coefficient of correlation (CC), coefficient of 

determination (R2), RMSE and mean absolute 

error (MAE), which depicts the correlation 

between output and input parameters. In a 

nutshell, input parameters consist of nine units 

which are being processed to output nodes of 

compressive strength at 28 days. In modeling, the 

results contain an actual value, predicted value of 

compressive strength, and error. It also includes 

network validation through coefficients CC, R2, 

RSME, and MAE obtained. 

5. Discussion

The main objective of this investigation was 

the applicability and comparative performance of 

Deep Neural Network, ANN, and RF using the 

same datasets (training and testing) taken for both 

techniques based on correlation coefficient, 

Coefficient of determination (R2), root mean 

square error (RMSE) and mean absolute error 

(MAE) as given in Table 1. The study's outcomes 

show that the Deep Neural Network model 

provides a better correlation coefficient than other 

techniques. Also, other fitness parameters for 

Deep Neural Network are also better than other 

techniques. The actual versus predicted values 

graphs for Deep Neural Network, ANN, and RF 

are given in Fig. 6 to Fig. 10. 

The Deep Neural Network model was 

optimized using a user-defined parameters 

algorithm with three hidden layers (120, 100, 80 

nodes), batch size=100, epochs=50, Activation 

function ReLU, and instance iterator=10. The 

above values were obtained after optimizing the 

model based on performance indicators after 

many trials. 

The ANN model was optimized using a user-

defined parameters algorithm, which employed 

two hidden layers [left neuron (8), right neuron 

(7)], learning rate=0.03, momentum=0.5, and 

iterations=10000. The above values were obtained 

after the model was optimized using performance 

indicators following numerous trials.
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Fig. 6 – Line diagram showing Actual versus Predicted compressive strength by Deep Neural Network for 

test data 

Fig. 7 – Line diagram showing Actual versus Predicted compressive strength by ANN for test data 

The RF model was optimized by user-

defined parameters using an algorithm that used 

bag size percent=100, batch size=100, max 

depth=0, number of execution slots=1, and 

iterations=100. The values mentioned above were 

obtained following the model's optimization based 

on performance indicators following numerous 

tests. 

Fig. 8 – Line diagram showing Actual versus Predicted compressive strength by RF for test data 

observed to be a better model to model the 

prediction of the compressive strength of SCC. 

The model's efficiency was compared based 

on CC, R2, RSME, and MAE, which are reflected 

in Table 5. Therefore Deep Neural Network is 

Table - 5 – Performance indicators of DNN, ANN and 

RF 
Fitness parameters CC MAE (MPa) RMSE (MPa) RAE (%) RRSE (%) 

ANN 0.905 3.873 4.653 54.653 51.848 

RF 0.895 3.238 4.001 45.665 44.580 

DNN 0.907 3.526 4.259 49.735 47.456 
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Fig. 9 – Graph for Actual versus Predicted 

compressive strength by DNN for training data 

Fig. 10 – Graph for Actual versus Predicted 

compressive strength by DNN for testing data 

determine the most valuable parameters. Model 

performance was altered by eliminating one of the 

input variables. Considering the absence of every 

input parameter, the performance of the models 

was examined using the estimation of indices 

containing CC, RMSE, and MAE. The outcome 

of the sensitivity analysis of the Deep Neural 

Network model is shown in Table 6, which shows 

the quantity of Coarse aggregate as the most 

influential parameter in the prediction of 

compressive strength, followed by fine aggregate 

and silica, which can be due to the presence of 

alternative cementitious materials. 

6. Sensitivity Analysis

Sensitivity analysis was assessed to discover 

the vital input parameter in estimating the 

compressive strength of SCC. The method 

describes the significance of each limitation in the 

model to predict compressive strength. Firstly, all 

the parameters in Table 1, excluding CS, were 

taken as inputs for the Deep Neural Network 

model; after that, disregarding single input 

parameters are summarized in Table 6. Then the 

model was rebuilt with the same arrangement. After 

the model structure was adjusted, the sensitivity 

analysis of the models was started to 

 

Input Parameters Removed Parameters 
DNN 

CC RMSE MAE 

Cement, water, silica, sp, FA, CA, Filler 0.907 4.259 3.526 

Water, silica, sp, FA, CA, Filler Cement 0.815 5.419 4.065 

Cement, silica, sp, FA, CA, Filler Water 0.848 5.305 4.444 

Cement, water,  sp, FA, CA, Filler Silica 0.814 6.052 4.841 

Cement, water, silica, FA, CA, Filler SP 0.892 4.215 3.516 

Cement, water, silica, sp, CA, Filler FA 0.801 5.420 3.785 

Cement, water, silica, sp, FA, Filler CA 0.702 6.901 5.689 

Cement, water, silica, sp, FA, CA Filler 0.846 5.076 4.202 

7. Limitations and future studies

A computational model for the compressive 

strengths of SCC mixes is proposed in this paper. If 

a new value were investigated outside the dataset's 

bounds, the predicted value would not represent a 

very accurate estimate of the compressive strengths 

of SCC mixes due to the dataset's somewhat 

constrained range. To more precisely predict the 

compressive strengths of SCC mixes, future study 

should expand the dataset range. The data gathered 

for this study can also be used to address other 

topics, such as how to determine split tensile 

strength and flexural strength and how those factors 

relate to compressive strength. The impact of the 

test data on the development of a new model and 

the accuracy of the models can be investigated by 

combining the test data with these data for further 

study. Additionally, the main objective of this study 

is to evaluate how well ANN, DNN, and RF 

learning models perform in estimating the 

compressive strengths of SCC mixes. Researchers 

will thus be able to compare the effectiveness of 

XGBoost and ensemble learning algorithms, with 

the above techniques, in the future. 

Table - 6 – Performance indicators of DNN, ANN and RF
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8. Conclusions

Self-compacting concrete (SCC) is an eco-

friendly material that is a boon for our sustainable 

development. The merits of SCC can solve many 

problems like segregation, concrete placement, 

concrete porosity, congested reinforcement 

concrete placed, etc. However, compressive 

strength and workability are significant properties 

that show its quality. There is a complex 

association between SCC's ingredients and 

compressive strength, which can be easily 

visualized and understood by Artificial Intelligence 

Techniques. To realize the association between the 

input and output parameters and the impact of 

constituents on the compressive strength of SCC 

models were created using three techniques, i.e., 

Deep Neural Network, Artificial Neural Network 

(ANN), and Random forest (RF). The study 

explores the potential of Deep Neural Network, 

ANN, and RF models by contrasting their outcomes 

for estimating the compressive strength of SCC. 

The primary inference from this study is the 

outperformance of the Deep Neural Network model 

over the ANN and RF model on all performance 

indicators. Therefore, it can be used to accurately 

estimate the compressive strength of SCC with 

specified ingredients. The results showed that these 

techniques have the remarkable capability and 

possibility for estimating the compressive strength 

of SCC. Sensitivity results reveal that the coarse 

aggregate is the utmost significant factor, when the 

Deep Neural Network model is implemented to 

estimate compressive strength and is the most 

pertinent parameter in the approximation of 

compressive strength for this data set. The highest 

R2 value was obtained for DNN technique followed 

by ANN technique, varying by slight margin. Also, 

RF technique performed comparative with both 

DNN and ANN techniques.  

In the present scenario, money and time are 

significant constraints to performing experiments in 

the laboratory. This artificial intelligence technique 

can be time-saving, cost, and laborious when 

conducting investigations to construct SCC. Thus, 

these approaches can boost and accelerate the rate 

of technological advancements in civil engineering. 

Also, a dependable prediction tool is provided, 

which suggests that the model can help scientists 

and engineers predict the strength of the Concrete. 
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